论文标题

YouTube建议的一种保养混淆方法

A Utility-Preserving Obfuscation Approach for YouTube Recommendations

论文作者

Zhang, Jiang, Askari, Hadi, Psounis, Konstantinos, Shafiq, Zubair

论文摘要

在线内容平台通过向用户提供个性化建议来优化参与度。这些推荐系统跟踪和个人资料用户可以预测用户可能感兴趣的相关内容。尽管个性化建议为用户提供了实用性,但使他们可以提出隐私问题的跟踪和分析,因为该平台可能会推断潜在敏感的用户兴趣。不依赖在线内容平台的合作的建立增强隐私的混淆方法的兴趣越来越大。但是,现有的混淆方法主要集中于增强隐私性,但与此同时,它们降低了效用,因为混淆引入了无关的建议。我们设计和实施了Youtube推荐系统的混淆方法,它不仅使用户的视频观看历史记录混淆以保护隐私,而且还为YouTube提供了视频建议来保留其实用性。与先前的混淆方法相反,De-Harpo添加了一种使用“秘密”输入(即用户的实际观看历史记录)以及对对抗性推荐系统(即肥胖的手表历史记录和相应的“ NOISY”建议)的信息。我们对De-Harpo的大规模评估表明,它在保留相同隐私级别的实用程序方面优于最先进的倍数,同时保持了隐身性和稳固性,以使其降低效果。

Online content platforms optimize engagement by providing personalized recommendations to their users. These recommendation systems track and profile users to predict relevant content a user is likely interested in. While the personalized recommendations provide utility to users, the tracking and profiling that enables them poses a privacy issue because the platform might infer potentially sensitive user interests. There is increasing interest in building privacy-enhancing obfuscation approaches that do not rely on cooperation from online content platforms. However, existing obfuscation approaches primarily focus on enhancing privacy but at the same time they degrade the utility because obfuscation introduces unrelated recommendations. We design and implement De-Harpo, an obfuscation approach for YouTube's recommendation system that not only obfuscates a user's video watch history to protect privacy but then also denoises the video recommendations by YouTube to preserve their utility. In contrast to prior obfuscation approaches, De-Harpo adds a denoiser that makes use of a "secret" input (i.e., a user's actual watch history) as well as information that is also available to the adversarial recommendation system (i.e., obfuscated watch history and corresponding "noisy" recommendations). Our large-scale evaluation of De-Harpo shows that it outperforms the state-of-the-art by a factor of 2x in terms of preserving utility for the same level of privacy, while maintaining stealthiness and robustness to de-obfuscation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源