论文标题

长尾认知诊断的自我监督的图表学习

Self-supervised Graph Learning for Long-tailed Cognitive Diagnosis

论文作者

Wang, Shanshan, Zeng, Zhen, Yang, Xun, Zhang, Xingyi

论文摘要

认知诊断是智能教育领域的一项基本但重要的研究任务,旨在发现不同学生在特定知识概念上的能力水平。尽管现有的努力有效,但以前的方法始终考虑了整个学生的精通水平,因此他们仍然会遭受长期的影响。在模型中,大量数据稀疏的学生的表现很差。为了减轻情况,我们提出了一个自我监督的认知诊断(SCD)框架,该框架利用自我监督的方式来协助基于图的认知诊断,然后可以改善那些稀疏数据的学生的表现。具体来说,我们提出了一种图形混乱方法,该方法在某些特殊规则下掉落边缘以生成图表的不同稀疏视图。通过在不同观点下最大化表示代表的一致性,该模型可以更集中于长尾学生。此外,我们提出了一项基于重要的视图生成规则,以改善长尾学生的影响。对现实世界数据集的广泛实验显示了我们方法的有效性,尤其是在数据稀疏的学生身上。

Cognitive diagnosis is a fundamental yet critical research task in the field of intelligent education, which aims to discover the proficiency level of different students on specific knowledge concepts. Despite the effectiveness of existing efforts, previous methods always considered the mastery level on the whole students, so they still suffer from the Long Tail Effect. A large number of students who have sparse data are performed poorly in the model. To relieve the situation, we proposed a Self-supervised Cognitive Diagnosis (SCD) framework which leverages the self-supervised manner to assist the graph-based cognitive diagnosis, then the performance on those students with sparse data can be improved. Specifically, we came up with a graph confusion method that drops edges under some special rules to generate different sparse views of the graph. By maximizing the consistency of the representation on the same node under different views, the model could be more focused on long-tailed students. Additionally, we proposed an importance-based view generation rule to improve the influence of long-tailed students. Extensive experiments on real-world datasets show the effectiveness of our approach, especially on the students with sparse data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源