论文标题

具有双线性形式的代数,并且具有同型内态性

Algebras with a bilinear form, and Idempotent endomorphisms

论文作者

Facchini, Alberto, Zadeh, Leila Heidari

论文摘要

所有$ k $ - 代数都带有双线性形式,其对象都是对$(r,b)$,其中$ r $是$ k $ -algebra和$ b \ b \ b \ colon r \ times r \ times r \ times r \ t t k $是双线性映射,相当于Unital $ k $ -algeberas $ $ $ a $ $ a $ a $ a $ a $ - $(k,1)\ to(a,1_a)unital $ k $ -algebras是$ k $ modules类别的分裂单态。称这种分裂的单态性为代数的左侧对左逆。 $ k $ - 代数的类别具有较弱的增强性的类别和类别的类别,$ k $ -k $ -k $ -sgerbras $(a,b_a)$,b_a $ b_a $兼容与$ a $的乘以$ a $,即$ a $ a $ a $ b_a $ b_a $ a $ $ $ xy = zw $。

The category of all $k$-algebras with a bilinear form, whose objects are all pairs $(R,b)$ where $R$ is a $k$-algebra and $b\colon R\times R\to k$ is a bilinear mapping, is equivalent to the category of unital $k$-algebras $A$ for which the canonical homomorphism $(k,1)\to(A,1_A)$ of unital $k$-algebras is a splitting monomorphism in the category of $k$-modules. Call the left inverses of this splitting monomorphism "weak augmentations" of the algebra. There is a category isomorphism between the category of $k$-algebras with a weak augmentation and the category of unital $k$-algebras $(A,b_A)$ with a bilinear form $b_A$ compatible with the multiplication of $A$, i.e., such that $b_A(x,y)=b_A(z,w)$ for all $x,y,z,w\in A$ for which $xy=zw$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源