论文标题
PointNeuron:通过几何学和拓扑学习点云的3D神经元重建
PointNeuron: 3D Neuron Reconstruction via Geometry and Topology Learning of Point Clouds
论文作者
论文摘要
来自3D显微镜图像的数字神经元重建是研究脑连接组学和神经元形态的重要技术。现有的重建框架使用基于卷积的分割网络在应用跟踪算法之前,将基于卷积的分割网络从嘈杂的背景中分配神经元。跟踪结果对原始图像质量和分割精度很敏感。在本文中,我们为3D神经元重建提供了一个新颖的框架。我们的关键思想是使用点云的几何表示能力,以更好地探索神经元的内在结构信息。我们提出的框架采用一个图形卷积网络来预测神经骨骼点,另一个框架网络来产生这些点的连通性。我们最终通过解释预测点坐标,半径和连接来生成目标SWC文件。在Bigneuron项目的Janelia-Fly数据集上进行了评估,我们表明我们的框架实现了具有竞争性的神经元重建性能。我们对点云的几何形状和拓扑学习可以进一步受益3D医学图像分析,例如心脏表面重建。我们的代码可在https://github.com/runkaizhao/pointNeuron上找到。
Digital neuron reconstruction from 3D microscopy images is an essential technique for investigating brain connectomics and neuron morphology. Existing reconstruction frameworks use convolution-based segmentation networks to partition the neuron from noisy backgrounds before applying the tracing algorithm. The tracing results are sensitive to the raw image quality and segmentation accuracy. In this paper, we propose a novel framework for 3D neuron reconstruction. Our key idea is to use the geometric representation power of the point cloud to better explore the intrinsic structural information of neurons. Our proposed framework adopts one graph convolutional network to predict the neural skeleton points and another one to produce the connectivity of these points. We finally generate the target SWC file through the interpretation of the predicted point coordinates, radius, and connections. Evaluated on the Janelia-Fly dataset from the BigNeuron project, we show that our framework achieves competitive neuron reconstruction performance. Our geometry and topology learning of point clouds could further benefit 3D medical image analysis, such as cardiac surface reconstruction. Our code is available at https://github.com/RunkaiZhao/PointNeuron.