论文标题
aplicaciónderedes神经元的助攻prosundas al Diagnodaso asistico asistido de la enfermedad de anfermedad de Alzheimer
Aplicación de redes neuronales convolucionales profundas al diagnóstico asistido de la enfermedad de Alzheimer
论文作者
论文摘要
目前,对阿尔茨海默氏病的诊断是一个复杂且容易出错的过程。改善这种诊断可以使疾病的早期发现并改善患者及其家人的生活质量。对于这项工作,我们将使用来自两种方式的249个大脑图像:宠物和MRI,取自ADNI数据库,并根据阿尔茨海默氏病的发展程度将其标记为三个类。我们提出了卷积神经网络的开发来执行这些图像的分类,在此期间,我们将研究该问题的网络深度,预处理医学图像的重要性,转移学习和数据增强技术的使用作为减少较少数据的问题的效果以及对多种医疗模态使用的效果的工具。我们还提出了一种评估方法的应用,该方法可以保证即使使用小数据集,也可以保证结果的重复性。遵循这种评估方法,我们最佳的最终模型(使用COVID-19数据)实现了准确性D 68 \%。此外,在独立的测试集中,同一模型达到70 \%的准确性,鉴于我们的数据集的尺寸很小,结果是一个有希望的结果。我们进一步得出结论,扩大网络的深度有助于解决这个问题,该图像预处理是解决此类医学问题的基本过程,并且使用数据增强和使用具有其他疾病图像的预训练网络的使用可以提供重大改进。
Currently, the diagnosis of Alzheimer's disease is a complex and error-prone process. Improving this diagnosis could allow earlier detection of the disease and improve the quality of life of patients and their families. For this work, we will use 249 brain images from two modalities: PET and MRI, taken from the ADNI database, and labelled into three classes according to the degree of development of Alzheimer's disease. We propose the development of a convolutional neural network to perform the classification of these images, during which, we will study the appropriate depth of the networks for this problem, the importance of pre-processing medical images, the use of transfer learning and data augmentation techniques as tools to reduce the effects of the problem of having too little data, and the simultaneous use of multiple medical imaging modalities. We also propose the application of an evaluation method that guarantees a good degree of repeatability of the results even when using a small dataset. Following this evaluation method, our best final model, which makes use of transfer learning with COVID-19 data, achieves an accuracy d 68\%. In addition, in an independent test set, this same model achieves 70\% accuracy, a promising result given the small size of our dataset. We further conclude that augmenting the depth of the networks helps with this problem, that image pre-processing is a fundamental process to address this type of medical problem, and that the use of data augmentation and the use of pre-trained networks with images of other diseases can provide significant improvements.