论文标题

元图智能玻璃用于对象识别

Metasurface Smart Glass for Object Recognition

论文作者

Tsai, Cheng-Chia, Huang, Xiaoyan, Wu, Zhicheng, Yu, Zongfu, Yu, Nanfang

论文摘要

近年来,人们对开发启发式方法进行了相当大的研究,以实现使用物理波的模拟计算。其中,设想使用光波的神经形态计算具有性能指标,例如计算速度和能源效率,超过了许多数量级的传统数字技术。然而,由于训练和制造复杂的光子结构难以支持具有足够表达能力的神经网络,基于光子学的神经形态计算仍然是一个挑战。在这里,我们基于可以通过直接处理从物体散布的光波来识别对象的跨曲面的衍射光学神经网络(ONN)。由数百万个元单元组成的二维阵列组成的元图可以实现对光波长的精确控制,并通过下波长分辨率来控制;因此,当用作ONN的本构层时,它们可以提供异常高的表达能力。我们在实验中基于单层元信息表明ONNS,这些元整形面积调节光波前的相位和极化,以识别光学连贯的二进制对象,包括手写数字和英语字母字母。我们在模拟中进一步证明了基于人面部验证的跨表面双线的ONNS。基于元表面的ONN的有利特征,包括超紧凑型形式,零功耗,超快速和并行数据处理能力以及物理保证的数据安全性,使它们适合于“边缘”感知设备,这些设备可以改变图像收集和分析的未来。

Recent years have seen a considerable surge of research on developing heuristic approaches to realize analog computing using physical waves. Among these, neuromorphic computing using light waves is envisioned to feature performance metrics such as computational speed and energy efficiency exceeding those of conventional digital techniques by many orders of magnitude. Yet, neuromorphic computing based on photonics remains a challenge due to the difficulty of training and manufacturing sophisticated photonic structures to support neural networks with adequate expressive power. Here, we realize a diffractive optical neural network (ONN) based on metasurfaces that can recognize objects by directly processing light waves scattered from the objects. Metasurfaces composed of a two-dimensional array of millions of meta-units can realize precise control of optical wavefront with subwavelength resolution; thus, when used as constitutive layers of an ONN, they can provide exceptionally high expressive power. We experimentally demonstrate ONNs based on single-layered metasurfaces that modulate the phase and polarization over optical wavefront for recognizing optically coherent binary objects, including hand-written digits and English alphabetic letters. We further demonstrate, in simulation, ONNs based on metasurface doublets for human facial verification. The advantageous traits of metasurface-based ONNs, including ultra-compact form factors, zero power consumption, ultra-fast and parallel data processing capabilities, and physics-guaranteed data security, make them suitable as "edge" perception devices that can transform the future of image collection and analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源