论文标题

改进了迭代量子算法以进行基态制备

Improved iterative quantum algorithm for ground-state preparation

论文作者

Liang, Jin-Min, Lv, Qiao-Qiao, Shen, Shu-Qian, Li, Ming, Wang, Zhi-Xi, Fei, Shao-Ming

论文摘要

在多体量子物理学和量子化学中,找到哈密顿系统的基态具有重要意义。我们提出了一种改进的迭代量子算法,以准备哈密顿量的基态。关键点是通过在量子设备上实现的量子梯度下降(QGD)在状态空间上优化成本函数。我们通过找到基本的上限并在算法和想象时间演变的一阶近似之间建立关系,提供有关QGD学习率的选择的实用指南。此外,我们将一种差异态制剂方法调整为子例程,以通过仅利用聚类量子资源来生成辅助状态。我们的算法的性能是通过没有和噪声的情况下的杜特隆分子和海森堡模型的数值计算来证明的。与现有算法相比,我们的方法具有优势,包括每次迭代的较高成功概率,测量精度独立的采样复杂性,较低的栅极复杂性和仅当辅助状态做好充分准备时才需要量子资源。

Finding the ground state of a Hamiltonian system is of great significance in many-body quantum physics and quantum chemistry. We propose an improved iterative quantum algorithm to prepare the ground state of a Hamiltonian. The crucial point is to optimize a cost function on the state space via the quantum gradient descent (QGD) implemented on quantum devices. We provide practical guideline on the selection of the learning rate in QGD by finding a fundamental upper bound and establishing a relationship between our algorithm and the first-order approximation of the imaginary time evolution. Furthermore, we adapt a variational quantum state preparation method as a subroutine to generate an ancillary state by utilizing only polylogarithmic quantum resources. The performance of our algorithm is demonstrated by numerical calculations of the deuteron molecule and Heisenberg model without and with noises. Compared with the existing algorithms, our approach has advantages including the higher success probability at each iteration, the measurement precision-independent sampling complexity, the lower gate complexity, and only quantum resources are required when the ancillary state is well prepared.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源