论文标题

Transalign:知识图的全自动有效实体对齐

TransAlign: Fully Automatic and Effective Entity Alignment for Knowledge Graphs

论文作者

Zhang, Rui, Zhao, Xiaoyan, Trisedya, Bayu Distiawan, Yang, Min, Cheng, Hong, Qi, Jianzhong

论文摘要

知识图(kgs)之间实体一致性的任务旨在识别来自代表同一实体的两个不同kgs的每对实体。为此任务提出了许多基于机器学习的方法。但是,据我们所知,现有方法都需要手动制作的种子对齐,这很昂贵。在本文中,我们提出了一种名为Transalign的第一种全自动对准方法,该方法不需要任何手动制作的种子对齐。具体而言,对于谓词嵌入,TransAlign构造谓词 - 图形图可以通过学习实体类型的注意力来自动捕获两个公斤谓词之间的相似性。对于实体嵌入,TransAlign首先使用Transe独立地计算每个kg的实体嵌入,然后通过根据其属性计算实体之间的相似性,将两个kgs的实体嵌入到同一矢量空间中。因此,无需手动制作的种子对准,都可以进行谓词对齐和实体对齐。 Transalign不仅是完全自动的,而且是非常有效的。使用现实世界KGS的实验表明,与最先进的方法相比,跨基因可显着提高实体比对的准确性。

The task of entity alignment between knowledge graphs (KGs) aims to identify every pair of entities from two different KGs that represent the same entity. Many machine learning-based methods have been proposed for this task. However, to our best knowledge, existing methods all require manually crafted seed alignments, which are expensive to obtain. In this paper, we propose the first fully automatic alignment method named TransAlign, which does not require any manually crafted seed alignments. Specifically, for predicate embeddings, TransAlign constructs a predicate-proximity-graph to automatically capture the similarity between predicates across two KGs by learning the attention of entity types. For entity embeddings, TransAlign first computes the entity embeddings of each KG independently using TransE, and then shifts the two KGs' entity embeddings into the same vector space by computing the similarity between entities based on their attributes. Thus, both predicate alignment and entity alignment can be done without manually crafted seed alignments. TransAlign is not only fully automatic, but also highly effective. Experiments using real-world KGs show that TransAlign improves the accuracy of entity alignment significantly compared to state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源