论文标题

心理物理评分:评估视觉识别模型生物学合理性的行为度量

Psychophysical-Score: A Behavioral Measure for Assessing the Biological Plausibility of Visual Recognition Models

论文作者

RichardWebster, Brandon, Dulay, Justin, DiFalco, Anthony, Caldesi, Elisabetta, Scheirer, Walter J.

论文摘要

在过去的十年中,卷积神经网络(CNN)已在人工智能(包括对象识别)的几乎所有视觉任务中已极大地取代了他们的前辈。然而,尽管进步丰富,但与生物学视觉相比,它们继续苍白。这种鸿沟促使开发了以生物学启发的模型的发展,这些模型试图模仿人类视觉系统,主要是在神经层面上,该模型使用标准数据集基准进行了评估。但是,需要更多的工作来了解这些模型如何感知视觉世界。本文提出了一种最先进的程序,该程序产生了一种新的度量,心理物理分数,该分数基于视觉心理物理学,并能够可靠地估算众多模型的感知反应 - 代表了复杂性和生物学灵感的范围很大。我们对生物学灵感和复杂性程度不同的十二个模型执行了程序,我们将结果与2,390个亚马逊机械土耳其人工人共同结果进行了比较,他们共同提供了约270万个感知反应。将每个模型的心理物理评分与最新的基于神经活动的指标,大脑评分进行比较。我们的研究表明,与人类感知行为高度相关的模型也与相应的神经活动具有很高的相关性。

For the last decade, convolutional neural networks (CNNs) have vastly superseded their predecessors in nearly all vision tasks in artificial intelligence, including object recognition. However, despite abundant advancements, they continue to pale in comparison to biological vision. This chasm has prompted the development of biologically-inspired models that have attempted to mimic the human visual system, primarily at a neural level, which is evaluated using standard dataset benchmarks. However, more work is needed to understand how these models perceive the visual world. This article proposes a state-of-the-art procedure that generates a new metric, Psychophysical-Score, which is grounded in visual psychophysics and is capable of reliably estimating perceptual responses across numerous models -- representing a large range in complexity and biological inspiration. We perform the procedure on twelve models that vary in degree of biological inspiration and complexity, we compare the results against the aggregated results of 2,390 Amazon Mechanical Turk workers who together provided ~2.7 million perceptual responses. Each model's Psychophysical-Score is compared against the state-of-the-art neural activity-based metric, Brain-Score. Our study indicates that models with a high correlation to human perceptual behavior also have a high correlation with the corresponding neural activity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源