论文标题

Richtmyer-Meshkov不稳定性和反击过程中的非平衡动力学效应

Nonequilibrium kinetics effects in Richtmyer-Meshkov instability and reshock processes

论文作者

Shan, Yiming, Xu, Aiguo, Wang, Lifeng, Zhang, Yudong

论文摘要

非平衡动力学效应在流体系统中广泛存在,可能会对惯性限制融合点火过程产生重大影响,而熵产生速率是访问压缩过程的关键因素。在这项工作中,我们通过两流体离散的Boltzmann方法(DBM)研究Richtmyer-Meshkov不稳定(RMI)和Reshock过程。首先,扰动振幅演化的DBM结果与实验的结果非常吻合。与两个均匀介质之间未受震动的平面界面上的正常震动的情况有很大不同,在RMI情况下,热力学非平衡(TNE)数量在令人震惊的过程和冲击阵线后面的动力学效应复杂但鼓舞人心的动力学效应。动力学效应由两组TNE量检测到。第一组是$ \ left |δ_{2}^{{{\ rm {*}}}} \ right | $,$ \ left |δ_{3,1}^{{\ rm {*}}}} Δ_{3}^{{{\ rm {*}}}}} \ right | $,$ \ left |δ__{4,2}^{{\ rm {*}}}}}}} \ right | $。所有四个TNE衡量的措施在令人震惊的过程中突然增加。 $ \ left |δ_{3,1}^{{{\ rm {*}}}} \ right | $和$ \ left |δ_{3}^{{\ rm {*}}}}}}}}}}} \ right |他们继续在冲击战线后面的速度下降得多。 $ \ left |δ_{2}^{{{\ rm {*}}}} \ right | $和$ \ weled |δ_{4,2}^{{\ rm {*}}}}}} \ right | $ $具有不同的尺寸,但显示相似的行为。它们迅速降低,在冲击战线后面很小。第二组的数量是$ {\ dot {s} _ {nomf}} $,$ {\ dot {s} _ {nuef}} $和$ {\ dot {s} _ {sum {sum {sum}}} $。发现混合区是$ {\ dot {s} _ {noef}} $的主要贡献区域,而流场区域不包括混合区是$ {\ dot {s} _ {normf}}} $的主要贡献区域。轻液的熵生产速率高于重型流体。

Nonequilibrium kinetic effects are widespread in fluid systems and might have a significant impact on the inertial confinement fusion ignition process, and the entropy production rate is a key factor in accessing the compression process. In this work, we study the Richtmyer-Meshkov instability (RMI) and the reshock process by a two-fluid discrete Boltzmann method (DBM). Firstly, the DBM result for the perturbation amplitude evolution is in good agreement with that of experiment. Greatly different from the case of normal shocking on unperturbed plane interface between two uniform media, in the RMI case, the Thermodynamic Non-Equilibrium (TNE) quantities show complex but inspiring kinetic effects in the shocking process and behind the shock front. The kinetic effects are detected by two sets of TNE quantities. The first set are $\left |Δ_{2}^{ {\rm{*}}}\right |$,$\left |Δ_{3,1}^{ {\rm{*}}}\right |$, $\left | Δ_{3}^{ {\rm{*}}}\right |$, and $\left |Δ_{4,2}^{ {\rm{*}}}\right |$. All the four TNE measures abruptly increase in the shocking process. $\left |Δ_{3,1}^{ {\rm{*}}}\right |$ and $\left |Δ_{3}^{ {\rm{*}}}\right |$ show similar behaviors. They continue to increase in a much lower rate behind the shock front. $\left |Δ_{2}^{ {\rm{*}}}\right |$ and $\left |Δ_{4,2}^{ {\rm{*}}}\right |$ have different dimensions, but show similar behaviors. They quickly decrease to be very small behind the shock front. The second set of TNE quantities are ${\dot{S} _{NOMF}}$, ${\dot{S} _{NOEF}}$ and ${\dot{S} _{sum}}$. It is found that the mixing zone is the primary contribution region to the ${\dot{S} _{NOEF}}$, while the flow field region excluding mixing zone is the primary contribution region to the ${\dot{S} _{NOMF}}$. The light fluid has a higher entropy production rate than the heavy fluid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源