论文标题
相交理论和Chern阶级关于正常品种
Intersection theory and Chern classes on normal varieties
论文作者
论文摘要
我们研究了正常品种的反身滑轮的交点理论和Chern类。特别是,我们将芒福德对正常表面的相交理论的概括定义为更高的维度。我们还定义并研究了第二个Chern类,用于正常品种的反射滑轮。我们使用这些结果证明了阳性特征正常品种的某些Bogomolov型不平等。我们还证明了阳性特征正常品种的一些新界限结果。
We study intersection theory and Chern classes of reflexive sheaves on normal varieties. In particular, we define generalization of Mumford's intersection theory on normal surfaces to higher dimensions. We also define and study the second Chern class for reflexive sheaves on normal varieties. We use these results to prove some Bogomolov type inequalities on normal varieties in positive characteristic. We also prove some new boundedness results on normal varieties in positive characteristic.