论文标题

轨道纹理的微观研究

Microscopic study of orbital textures

论文作者

Han, Seungyun, Lee, Hyun-Woo, Kim, Kyoung-Whan

论文摘要

许多有趣的旋转和轨道运输现象源自轨道纹理,指的是$ \ vec {k} $ - 依赖性轨道状态。以前的大多数作品都是基于对称分析的,以对轨道纹理进行建模并分析其后果。但是,轨道纹理及其强度的微观起源在很大程度上没有探索。在这项工作中,我们从各种情况的微观紧密结合模型中得出了轨道质地哈密顿量。要形成轨道纹理,有必要$ \ vec {k} $ - 依赖性的轨道状态。我们揭示了杂交的两个微观机制:(i)晶格结构效应和(ii)其他轨道状态的介导。通过考虑轨道杂交,我们不仅重现了通过对称分析获得的轨道哈密顿量,而且还揭示了先前未报告的轨道质地,例如轨道dresselhaus纹理和各向异性轨道轨道质地。这里获得的轨道汉密尔顿人将有助于分析轨道物理学和设计适合自旋磁应用的材料。我们表明,我们的理论还为物理现象(例如轨道Rashba效应和轨道霍尔效应)提供了有用的微观见解。我们的形式主义是如此概括,以至于可以在存在周期性晶格结构的情况下将其应用于任意轨道的有效轨道哈密顿量。

Many interesting spin and orbital transport phenomena originate from orbital textures, referring to $\vec{k}$-dependent orbital states. Most of previous works are based on symmetry analysis to model the orbital texture and analyze its consequences. However the microscopic origins of orbital texture and its strength are largely unexplored. In this work, we derive the orbital texture Hamiltonians from microscopic tight-binding models for various situations. To form an orbital texture, $\vec{k}$-dependent hybridization of orbital states are necessary. We reveal two microscopic mechanisms for the hybridization: (i) lattice structure effect and (ii) mediation by other orbital states. By considering the orbital hybridization, we not only reproduce the orbital Hamiltonian obtained by the symmetry analysis but also reveal previously unreported orbital textures like orbital Dresselhaus texture and anisotropic orbital texture. The orbital Hamiltonians obtained here would be useful for analyzing the orbital physics and designing the materials suitable for spin-orbitronic applications. We show that our theory also provides useful microscopic insight into physical phenomena such as the orbital Rashba effect and the orbital Hall effect. Our formalism is so generalizable that one can apply it to obtain effective orbital Hamiltonians for arbitrary orbitals in the presence of periodic lattice structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源