论文标题

半群上的D'AlemberT型功能方程

A d'Alembert type functional equation on semigroups

论文作者

Aserrar, Youssef, Elqorachi, Elhoucien

论文摘要

我们处理两个相关的三角功能方程。首先,我们解决$μ$ - sine减法法\ [μ(y)k(y)k(xσ(y))= k(x)l(x)l(y)-k(y)-k(y)l(x),\ quad x,y \ in s,y \ in s,l: $μ:s \ rightarrow \ mathbb {c} $是一个乘法函数,以至于所有$ x \ in s $中的$μ(xσ(x)= 1 $,然后我们确定以下功能方程的复杂值解决方案\ [f(xy) - μ(xy) - μ(μ)f(y)f(y)f(y)f(y)f(y)x(y)x y(x)在较大的半群中。

We treat two related trigonometric functional equations on semigroups. First we solve the $μ$-sine subtraction law \[μ(y) k(x σ(y))=k(x) l(y)-k(y) l(x), \quad x, y \in S,\] for $k, l : S\rightarrow \mathbb{C}$, where $S$ is a semigroup and $σ$ an involutive automorphism, $μ:S\rightarrow \mathbb{C}$ is a multiplicative function such that $μ(xσ(x))=1$ for all $x\in S$, then we determine the complex-valued solutions of the following functional equation \[f(xy) - μ(y)f(σ(y)x) = g(x)h(y),\quad x,y\in S,\] on a larger class of semigroups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源