论文标题

疯狂:跨域无人机数据集,传感器数量增加,以开发高级和新型估计器

INSANE: Cross-Domain UAV Data Sets with Increased Number of Sensors for developing Advanced and Novel Estimators

论文作者

Brommer, Christian, Fornasier, Alessandro, Scheiber, Martin, Delaune, Jeff, Brockers, Roland, Steinbrener, Jan, Weiss, Stephan

论文摘要

对于实际应用程序,自动移动机器人平台必须能够在多种不同且动态的环境中安全地导航,而准确且健壮的本地化是关键先决条件。为了支持该领域的进一步研究,我们介绍了疯狂的数据集 - 用于交叉环境本地化的多功能微型航空车辆(MAV)数据集。数据集为本地化方法提供了多个困难阶段的各种方案。这些场景范围从室内运动捕获设施的受控环境中的轨迹到车辆进行户外操纵的实验,并过渡到建筑物中,需要更改传感器方式,到纯粹的户外飞行手术器,以在挑战性的火箭盘环境中模拟当前和未来的Mars Helicepter的户外飞行操作,以表演哪些型号。提出的工作旨在提供反映现实世界情景和传感器效应的数据。广泛的传感器套件包括各种传感器类别,包括多个惯性测量单元(IMU)和相机。传感器数据可作为原始测量值提供,并且每个数据集提供了高度准确的地面真相,包括室外实验,其中双实时运动学(RTK)全球导航卫星系统(GNSS)设置提供了次级和厘米精度(1-Sigma)。传感器套件还包括一个专用的高速IMU,可在飞行过程中捕获车辆的所有振动动力学,以支持对新型机器学习基于基于机器的传感器信号增强方法的研究,以改善定位。数据集和后处理工具可在以下网址提供:https://sst.aau.at/cns/datasets

For real-world applications, autonomous mobile robotic platforms must be capable of navigating safely in a multitude of different and dynamic environments with accurate and robust localization being a key prerequisite. To support further research in this domain, we present the INSANE data sets - a collection of versatile Micro Aerial Vehicle (MAV) data sets for cross-environment localization. The data sets provide various scenarios with multiple stages of difficulty for localization methods. These scenarios range from trajectories in the controlled environment of an indoor motion capture facility, to experiments where the vehicle performs an outdoor maneuver and transitions into a building, requiring changes of sensor modalities, up to purely outdoor flight maneuvers in a challenging Mars analog environment to simulate scenarios which current and future Mars helicopters would need to perform. The presented work aims to provide data that reflects real-world scenarios and sensor effects. The extensive sensor suite includes various sensor categories, including multiple Inertial Measurement Units (IMUs) and cameras. Sensor data is made available as raw measurements and each data set provides highly accurate ground truth, including the outdoor experiments where a dual Real-Time Kinematic (RTK) Global Navigation Satellite System (GNSS) setup provides sub-degree and centimeter accuracy (1-sigma). The sensor suite also includes a dedicated high-rate IMU to capture all the vibration dynamics of the vehicle during flight to support research on novel machine learning-based sensor signal enhancement methods for improved localization. The data sets and post-processing tools are available at: https://sst.aau.at/cns/datasets

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源