论文标题
可验证且可证明的机器
Verifiable and Provably Secure Machine Unlearning
论文作者
论文摘要
培训后,机器擦除旨在从机器学习模型的训练数据集中删除点:例如,当用户请求删除其数据时。虽然已经提出了许多未学习的方法,但没有一个使用户能够审核该过程。此外,最近的工作表明,用户无法仅从检查模型参数的检查中验证其数据是否是从模型参数中进行的。我们建议将可验证的解读视为安全问题,而不是对参数进行推理。为此,我们介绍了对可验证的未学习的第一个加密定义,以正式捕获未学习系统的保证。在此框架中,服务器首先计算出在数据集D训练该模型的证据D。鉴于用户的数据点D要求删除,服务器使用未学习算法更新模型。然后,它提供了正确执行未学习的证明,并且D不是D'的一部分,其中D'是新的培训数据集(即D已删除D)。我们的框架通常适用于我们作为可允许功能抽象的不同学习技术。我们使用SNARK和HASH链在框架中实例化协议,基于加密假设。最后,我们为三种不同的学习技术实施协议,并验证其对线性回归,逻辑回归和神经网络的可行性。
Machine unlearning aims to remove points from the training dataset of a machine learning model after training: e.g., when a user requests their data to be deleted. While many unlearning methods have been proposed, none of them enable users to audit the procedure. Furthermore, recent work shows a user is unable to verify whether their data was unlearnt from an inspection of the model parameter alone. Rather than reasoning about parameters, we propose to view verifiable unlearning as a security problem. To this end, we present the first cryptographic definition of verifiable unlearning to formally capture the guarantees of an unlearning system. In this framework, the server first computes a proof that the model was trained on a dataset D. Given a user's data point d requested to be deleted, the server updates the model using an unlearning algorithm. It then provides a proof of the correct execution of unlearning and that d is not part of D', where D' is the new training dataset (i.e., d has been removed). Our framework is generally applicable to different unlearning techniques that we abstract as admissible functions. We instantiate a protocol in the framework, based on cryptographic assumptions, using SNARKs and hash chains. Finally, we implement the protocol for three different unlearning techniques and validate its feasibility for linear regression, logistic regression, and neural networks.