论文标题

使用未标记数据的学习说明进行零射击交叉任务概括

Learning Instructions with Unlabeled Data for Zero-Shot Cross-Task Generalization

论文作者

Gu, Yuxian, Ke, Pei, Zhu, Xiaoyan, Huang, Minlie

论文摘要

培训语言模型以从人类的指示中学习零射击交叉任务概括,引起了NLP社区的广泛关注。最近,在通过Human-Craft指令中描述的大量任务收集的预先培训的语言模型(IT)中,已显示出对看不见的任务的指导学习有效的,该教学调整(IT)已进行了预先训练的语言模型。但是,它依赖大量的人类宣传样本,从而限制了其概括。与标记的数据不同,未标记的数据通常是巨大的,而且可以获得便宜。在这项工作中,我们研究了如何通过未标记的数据来改进它。我们首先从经验上探索IT性能趋势与标记数据,说明和培训任务的数量。我们发现,扩大培训指令的数量至关重要,并且由于标记的数据缺乏,指令不足。然后,我们提出了未标记的数据增强指令调整(UDIT),以通过从未标记的纯文本构造伪标记的数据来更好地利用其指令。我们进行了广泛的实验,以显示UDIT在任务和数据集各种情况下的有效性。我们还全面分析了UDIT的关键因素,以研究如何通过未标记的数据更好地改善它。该代码可在https://github.com/thu-coai/udit上公开获取。

Training language models to learn from human instructions for zero-shot cross-task generalization has attracted much attention in NLP communities. Recently, instruction tuning (IT), which fine-tunes a pre-trained language model on a massive collection of tasks described via human-craft instructions, has been shown effective in instruction learning for unseen tasks. However, IT relies on a large amount of human-annotated samples, which restricts its generalization. Unlike labeled data, unlabeled data are often massive and cheap to obtain. In this work, we study how IT can be improved with unlabeled data. We first empirically explore the IT performance trends versus the number of labeled data, instructions, and training tasks. We find it critical to enlarge the number of training instructions, and the instructions can be underutilized due to the scarcity of labeled data. Then, we propose Unlabeled Data Augmented Instruction Tuning (UDIT) to take better advantage of the instructions during IT by constructing pseudo-labeled data from unlabeled plain texts. We conduct extensive experiments to show UDIT's effectiveness in various scenarios of tasks and datasets. We also comprehensively analyze the key factors of UDIT to investigate how to better improve IT with unlabeled data. The code is publicly available at https://github.com/thu-coai/UDIT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源