论文标题

双曲线3个manifolds中的非R覆盖的Anosov流是quasigeodesic

Non R-covered Anosov flows in hyperbolic 3-manifolds are quasigeodesic

论文作者

Fenley, Sergio R

论文摘要

主要结果是,如果未覆盖闭合双曲线三歧管中的Anosov流动,则流量为quasigeodesic流。我们还证明,如果双曲线三个歧管支持Anosov流动,则直至双层盖子,它都会支持quasigeodesic流。我们证明了在封闭的双曲线三歧管中任何Anosov流的稳定和不稳定叶子的连续扩展特性,并且存在与任何此类流动相关的组不变的Peano曲线的存在。

The main result is that if an Anosov flow in a closed hyperbolic three manifold is not R-covered, then the flow is a quasigeodesic flow. We also prove that if a hyperbolic three manifold supports an Anosov flow, then up to a double cover it supports a quasigeodesic flow. We prove the continuous extension property for the stable and unstable foliations of any Anosov flow in a closed hyperbolic three manifold, and the existence of group invariant Peano curves associated with any such flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源