论文标题

$ sl_n $蜘蛛类别之间的比较

A comparison between $SL_n$ spider categories

论文作者

Poudel, Anup

论文摘要

我们通过在各种现有的$ sl_n $ skein理论之间进行比较来证明Lê和Sikora的猜想。在这样做的同时,我们表明蜘蛛类别的完整子类别,$ \ Mathcal {s} p(sl_n)$,由Cautis-kamnitzer-Morrison定义,其对象是由标准表示形式产生的,及其对偶的对象是相等的,是球形的类别,是sikora sikora的球形类别。这也回答了莫里森博士的问题。论文。最后,我们表明与CKM相关的绞线模块是同构的。

We prove a conjecture of Lê and Sikora by providing a comparison between various existing $SL_n$ skein theories. While doing so, we show that the full subcategory of the spider category, $\mathcal{S}p(SL_n)$, defined by Cautis-Kamnitzer-Morrison, whose objects are monoidally generated by the standard representation and its dual, is equivalent as a spherical braided category to Sikora's quotient category. This also answers a question from Morrison's Ph.D. thesis. Finally, we show that the skein modules associated to the CKM and Sikora's webs are isomorphic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源