论文标题

数据驱动的可观察性分解与Koopman操作员以优化非线性系统的输出功能

Data-Driven Observability Decomposition with Koopman Operators for Optimization of Output Functions of Nonlinear Systems

论文作者

Balakrishnan, Shara, Hasnain, Aqib, Egbert, Robert, Yeung, Enoch

论文摘要

当具有非线性动力学的复杂系统达到输出性能目标时,只有一部分状态动态会显着影响输出。这些最小的状态动力学可以使用差别的几何方法来识别非线性系统的可观察性,但该理论仅限于分析系统。在本文中,我们将非线性可观察到的分解的概念扩展到了更通用的数据信息系统。我们采用Koopman操作员理论,该理论封装了线性模型中的非线性动力学,使我们能够弥合线性和非线性可观察性概念之间的差距。我们提出了一种新算法来学习Koopman操作员表示,以捕获系统动态,同时确保输出性能度量在其可观察到的范围内。我们表明,该线性,包括输出的Koopman模型的转换为新的最小Koopman表示形式提供。该表示仅体现了原始系统的非线性可观察分解的可观察部分。该理论的主要应用是识别与特定表型相对应的生物系统中的基因。我们模拟了两个生物基因网络,并证明Koopman操作员的可观察性可以成功识别驱动每个表型的基因。我们预计我们的新型系统识别工具将有效地发现减少的基因网络,从而驱动生物系统中的复杂行为。

When complex systems with nonlinear dynamics achieve an output performance objective, only a fraction of the state dynamics significantly impacts that output. Those minimal state dynamics can be identified using the differential geometric approach to the observability of nonlinear systems, but the theory is limited to only analytical systems. In this paper, we extend the notion of nonlinear observable decomposition to the more general class of data-informed systems. We employ Koopman operator theory, which encapsulates nonlinear dynamics in linear models, allowing us to bridge the gap between linear and nonlinear observability notions. We propose a new algorithm to learn Koopman operator representations that capture the system dynamics while ensuring that the output performance measure is in the span of its observables. We show that a transformation of this linear, output-inclusive Koopman model renders a new minimum Koopman representation. This representation embodies only the observable portion of the nonlinear observable decomposition of the original system. A prime application of this theory is to identify genes in biological systems that correspond to specific phenotypes, the performance measure. We simulate two biological gene networks and demonstrate that the observability of Koopman operators can successfully identify genes that drive each phenotype. We anticipate our novel system identification tool will effectively discover reduced gene networks that drive complex behaviors in biological systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源