论文标题

数据驱动的传感器放置方法,用于检测分配系统中违反电压的行为

A Data-Driven Sensor Placement Approach for Detecting Voltage Violations in Distribution Systems

论文作者

Buason, Paprapee, Misra, Sidhant, Talkington, Samuel, Molzahn, Daniel K.

论文摘要

分布式能源资源(DERS)与负载可变性相结合的电力注射的随机波动可能会导致电动分配系统中的限制违规(例如,超过电压限制)。为了监视网格操作,放置传感器以测量重要数量,例如电压幅度。在本文中,我们考虑了一个传感器放置问题,该问题旨在识别安装传感器的位置,这些传感器可以捕获所有可能违反电压幅度限制的情况。我们制定了一个双层优化问题,该问题可最大程度地减少传感器的数量,并避免在上层中的错误传感器警报,同时确保在较低级别检测到任何违反电压的行为。由于功率流程方程的非线性和二进制变量的存在,此问题具有挑战性。因此,我们采用了最近开发的电源流程方程的保守线性近似值,这些逼近高估或低估了电压幅度。通过用保守的线性近似替换非线性功率流程方程,我们可以确保所得的传感器位置和阈值足以确定任何约束违规。此外,我们采用各种问题重新进行,以显着提高计算障碍,同时确保适当的传感器放置。最后,我们通过调整传感器阈值的近似梯度下降方法来提高结果的质量。我们证明了我们提出的方法对多种测试用例的有效性,包括具有多个切换配置的系统。

Stochastic fluctuations in power injections from distributed energy resources (DERs) combined with load variability can cause constraint violations (e.g., exceeded voltage limits) in electric distribution systems. To monitor grid operations, sensors are placed to measure important quantities such as the voltage magnitudes. In this paper, we consider a sensor placement problem which seeks to identify locations for installing sensors that can capture all possible violations of voltage magnitude limits. We formulate a bilevel optimization problem that minimizes the number of sensors and avoids false sensor alarms in the upper level while ensuring detection of any voltage violations in the lower level. This problem is challenging due to the nonlinearity of the power flow equations and the presence of binary variables. Accordingly, we employ recently developed conservative linear approximations of the power flow equations that overestimate or underestimate the voltage magnitudes. By replacing the nonlinear power flow equations with conservative linear approximations, we can ensure that the resulting sensor locations and thresholds are sufficient to identify any constraint violations. Additionally, we apply various problem reformulations to significantly improve computational tractability while simultaneously ensuring an appropriate placement of sensors. Lastly, we improve the quality of the results via an approximate gradient descent method that adjusts the sensor thresholds. We demonstrate the effectiveness of our proposed method for several test cases, including a system with multiple switching configurations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源