论文标题
FIMP:图形神经网络的基础模型信息传递
FIMP: Foundation Model-Informed Message Passing for Graph Neural Networks
论文作者
论文摘要
基金会模型在许多领域取得了巨大的成功,依靠在大量数据上进行预处理。图形结构化数据通常缺乏与非结构化数据相同的规模,从而使图基础模型的开发具有挑战性。在这项工作中,我们提出了基础信息消息传递(FIMP),这是一个图形神经网络(GNN)消息通话框架,该框架利用了基于图的任务中预修了非文本基础模型。我们表明,基础模型的自发层可以有效地在图表上重新利用,以执行基于跨节点注意的消息通话。我们的模型将在现实世界图像网络数据集以及两个生物学应用程序(单细胞RNA测序数据和fMRI大脑活动记录)上进行评估。 FIMP胜过强大的基线,表明它可以有效地利用图形任务中的最新基础模型。
Foundation models have achieved remarkable success across many domains, relying on pretraining over vast amounts of data. Graph-structured data often lacks the same scale as unstructured data, making the development of graph foundation models challenging. In this work, we propose Foundation-Informed Message Passing (FIMP), a Graph Neural Network (GNN) message-passing framework that leverages pretrained non-textual foundation models in graph-based tasks. We show that the self-attention layers of foundation models can effectively be repurposed on graphs to perform cross-node attention-based message-passing. Our model is evaluated on a real-world image network dataset and two biological applications (single-cell RNA sequencing data and fMRI brain activity recordings) in both finetuned and zero-shot settings. FIMP outperforms strong baselines, demonstrating that it can effectively leverage state-of-the-art foundation models in graph tasks.