论文标题

贝叶斯卷积神经网络基于广义线性模型

A Bayesian Convolutional Neural Network-based Generalized Linear Model

论文作者

Jeon, Yeseul, Chang, Won, Jeong, Seonghyun, Han, Sanghoon, Park, Jaewoo

论文摘要

当输入变量以图像或空间数据的形式形式时,卷积神经网络(CNN)为多种应用提供了灵活的函数近似值。尽管CNN在预测准确性方面通常超过传统统计模型,但由于高度复杂的模型结构和过度参数化,例如估计协变量和量化预测不确定性的影响和量化预测不确定性并不是微不足道的。为了应对这一挑战,我们通过将CNN嵌入广义线性模型(GLMS)框架中,提出了一种新的贝叶斯方法。我们将带有Monte Carlo(MC)辍学的CNN的最后一个隐藏层提取的节点作为GLM中的信息变量。这提高了预测和回归系数推断的准确性,从而可以解释系数和不确定性定量。通过将集合GLM拟合在MC辍学的多个实现中,我们可以解释提取功能的不确定性。我们将方法应用于生物学和流行病学问题,这些问题既具有高维相关的输入和载体协变量。具体而言,我们考虑疟疾发病率数据,脑肿瘤图像数据和fMRI数据。通过从相关输入中提取信息,提出的方法可以提供可解释的贝叶斯分析。该算法可以通过迅速启用准确的贝叶斯推断来广泛地适用于图像回归或相关数据分析。

Convolutional neural networks (CNNs) provide flexible function approximations for a wide variety of applications when the input variables are in the form of images or spatial data. Although CNNs often outperform traditional statistical models in prediction accuracy, statistical inference, such as estimating the effects of covariates and quantifying the prediction uncertainty, is not trivial due to the highly complicated model structure and overparameterization. To address this challenge, we propose a new Bayesian approach by embedding CNNs within the generalized linear models (GLMs) framework. We use extracted nodes from the last hidden layer of CNN with Monte Carlo (MC) dropout as informative covariates in GLM. This improves accuracy in prediction and regression coefficient inference, allowing for the interpretation of coefficients and uncertainty quantification. By fitting ensemble GLMs across multiple realizations from MC dropout, we can account for uncertainties in extracting the features. We apply our methods to biological and epidemiological problems, which have both high-dimensional correlated inputs and vector covariates. Specifically, we consider malaria incidence data, brain tumor image data, and fMRI data. By extracting information from correlated inputs, the proposed method can provide an interpretable Bayesian analysis. The algorithm can be broadly applicable to image regressions or correlated data analysis by enabling accurate Bayesian inference quickly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源