论文标题

FedForgery:通过剩余联合学习的广义伪造检测

FedForgery: Generalized Face Forgery Detection with Residual Federated Learning

论文作者

Liu, Decheng, Dang, Zhan, Peng, Chunlei, Zheng, Yu, Li, Shuang, Wang, Nannan, Gao, Xinbo

论文摘要

随着图像生成模型领域中深度学习的持续发展,已经在互联网上产生了大量生动的锻造面孔。这些高实施的人工制品可能会导致对社会安全的威胁。现有的面部伪造检测方法直接利用获得的公共共享或集中数据进行培训,但当无法在现实世界中共享个人数据时,忽略了个人隐私和安全问题。此外,由不同的人工类型引起的不同分布将进一步对伪造检测任务产生不利影响。为了解决上述问题,本文提出了一种新型的普遍剩余的联合伪造学习,以进行伪造检测(FedForgery)。设计的变异自动编码器旨在学习鲁棒的判别残差图,以检测伪造的面孔(具有多样化甚至未知的伪影类型)。此外,引入了一般联合学习策略,以构建与多个本地分散设备进行合作培训的分布式检测模型,这可以进一步增强表示的概括。在公开伪造检测数据集上进行的实验证明了拟议的FedForgery的出色表现。设计的新型广义伪造检测方案和源代码将公开使用。

With the continuous development of deep learning in the field of image generation models, a large number of vivid forged faces have been generated and spread on the Internet. These high-authenticity artifacts could grow into a threat to society security. Existing face forgery detection methods directly utilize the obtained public shared or centralized data for training but ignore the personal privacy and security issues when personal data couldn't be centralizedly shared in real-world scenarios. Additionally, different distributions caused by diverse artifact types would further bring adverse influences on the forgery detection task. To solve the mentioned problems, the paper proposes a novel generalized residual Federated learning for face Forgery detection (FedForgery). The designed variational autoencoder aims to learn robust discriminative residual feature maps to detect forgery faces (with diverse or even unknown artifact types). Furthermore, the general federated learning strategy is introduced to construct distributed detection model trained collaboratively with multiple local decentralized devices, which could further boost the representation generalization. Experiments conducted on publicly available face forgery detection datasets prove the superior performance of the proposed FedForgery. The designed novel generalized face forgery detection protocols and source code would be publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源