论文标题
印度股票市场的行业分析:长期和短期风险和稳定分析
Sector-wise analysis of Indian stock market: Long and short-term risk and stability analysis
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper, for the first time, focuses on the sector-wise analysis of a stock market through multifractal analysis. We have considered Bombay Stock Exchange, India, and identified two time scales, short ($<200$ days) and long time-scale ($>200$ days) for investment. We infer that long-term investment will be more profitable. For long time scale, sectors can be separated into two categories based on the Hurst exponent values; one corresponds to stable sectors with small fluctuations, and the other with dominance of large fluctuations leading to possible downturns in those sectors.