论文标题
部分可观测时空混沌系统的无模型预测
The Number of Solutions to the Trinomial Thue Equation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this paper, we study the number of integer pair solutions to the equation $|F(x,y)| = 1$ where $F(x,y) \in \mathbb{Z}[x,y]$ is an irreducible (over $\mathbb{Z}$) binary form with degree $n \geqslant 3$ and exactly three nonzero summands. In particular, we improve Emery Thomas' explicit upper bounds on the number of solutions to this equation. For instance, when $n \geqslant 219$, we show that there are no more than 32 integer pair solutions to this equation when $n$ is odd and no more than 40 integer pair solutions to this equation when $n$ is even, an improvement on Thomas' work, where he shows that there are no more than 38 such solutions when $n$ is odd and no more than 48 such solutions when $n$ is even.