论文标题
大规模带宽和功率优化用于多模式边缘智能自动驾驶
Large-Scale Bandwidth and Power Optimization for Multi-Modal Edge Intelligence Autonomous Driving
论文作者
论文摘要
Edge Intelligence自主驾驶(EIAD)提供了自动驾驶汽车中的计算资源,用于培训深层神经网络。但是,由于车辆的高机动性,边缘服务器和自动驾驶汽车之间的无线通道很及时。此外,所需数量的不同数据模式的培训样本,例如图像,点云,是多种多样的。因此,当将这些数据集从车辆到边缘服务器收集时,所有数据帧中关联的带宽和功率分配是一个大规模的多模式优化问题。本文提出了一种高度计算上有效的算法,该算法直接最大化培训质量(QOT)。关键成分包括一个数据驱动的模型,用于量化数据模式的优先级和两种称为加速梯度投影的一阶方法,以及用于低复杂性资源分配的双重分解。最后,汽车学习行动(CARLA)的高保真模拟表明,拟议的算法将感知错误降低了$ 3 \%$,计算时间降低了$ 98 \%$。
Edge intelligence autonomous driving (EIAD) offers computing resources in autonomous vehicles for training deep neural networks. However, wireless channels between the edge server and the autonomous vehicles are time-varying due to the high-mobility of vehicles. Moreover, the required number of training samples for different data modalities, e.g., images, point-clouds, is diverse. Consequently, when collecting these datasets from vehicles to the edge server, the associated bandwidth and power allocation across all data frames is a large-scale multi-modal optimization problem. This article proposes a highly computationally efficient algorithm that directly maximizes the quality of training (QoT). The key ingredients include a data-driven model for quantifying the priority of data modality and two first-order methods termed accelerated gradient projection and dual decomposition for low-complexity resource allocation. Finally, high-fidelity simulations in Car Learning to Act (CARLA) show that the proposed algorithm reduces the perception error by $3\%$ and the computation time by $98\%$.