论文标题

一类在测量空间和应用上的多线性界振荡操作员

A class of multilinear bounded oscillation operators on measure spaces and applications

论文作者

Cao, Mingming, Ibañez-Firnkorn, Gonzalo, Rivera-Ríos, Israel P., Xue, Qingying, Yabuta, Kôzô

论文摘要

在本文中,我们为一类BANACH价值的多线性界定振荡操作员开发了一个全面的加权理论,该振荡算子将多线级别的calderón-Zygmund运算符与多数运算符合并,超越了多线性calderón-Zygmund理论。我们证明,这种多线性运算符和相应的换向器分别由两个稀疏的二元算子局部控制。我们还建立了三种典型估计:局部指数衰减估计值,混合弱类型估计和急剧的加权规范不平等。除此之外,基于抽象多线紧凑型操作员的卢比奥·德·弗朗西亚(Rubio de Francia)外推,我们在同质类型的空间上为特定多线性操作员的换向器获得了加权紧凑型。紧凑的外推可以使我们获得全范围的指数,而多线性紧凑型操作员的加权插值对于紧凑的外推至关重要。这些是由于在准巴纳赫范围内的加权fréchet-kolmogorov定理引起的,该定理赋予了加权lebesgue空间中亚集的相对紧凑性的表征。作为应用,我们说明了多线性界振荡操作员,其中包括在测量空间上的多线性硬质木材最大运算符,多线性$ω$-CALDERón-Zygmund运算符在同质类型,多型彼此的多层订购的多层式运算符,多层井井有条的均等级别的均等水平上单数积分和$ Q $ - $ω$-CALDERón-Zygmund运营商。

In this paper, we develop a comprehensive weighted theory for a class of Banach-valued multilinear bounded oscillation operators on measure spaces, which merges multilinear Calderón-Zygmund operators with a quantity of operators beyond the multilinear Calderón-Zygmund theory. We prove that such multilinear operators and corresponding commutators are locally pointwise dominated by two sparse dyadic operators, respectively. We also establish three kinds of typical estimates: local exponential decay estimates, mixed weak type estimates, and sharp weighted norm inequalities. Beyond that, based on Rubio de Francia extrapolation for abstract multilinear compact operators, we obtain weighted compactness for commutators of specific multilinear operators on spaces of homogeneous type. A compact extrapolation allows us to get full range of exponents, while weighted interpolation for multilinear compact operators is crucial to the compact extrapolation. These are due to a weighted Fréchet-Kolmogorov theorem in the quasi-Banach range, which gives a characterization of relative compactness of subsets in weighted Lebesgue spaces. As applications, we illustrate multilinear bounded oscillation operators with examples including multilinear Hardy-Littlewood maximal operators on measure spaces, multilinear $ω$-Calderón-Zygmund operators on spaces of homogeneous type, multilinear Littlewood-Paley square operators, multilinear Fourier integral operators, higher order Calderón commutators, maximally modulated multilinear singular integrals, and $q$-variation of $ω$-Calderón-Zygmund operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源