论文标题
生成模型不确定性估计
Generative models uncertainty estimation
论文作者
论文摘要
近年来,已经提出了基于生成模型的全部参数快速模拟方法,用于各种高能量物理探测器。从本质上讲,数据驱动模型的质量在数据稀疏的相空间区域降低。由于很难从物理原理中分析机器学习模型,因此以数据驱动的方式执行了常用的测试程序,并且不能可靠地在此类地区使用。在我们的工作中,我们提出了三种方法,以估算训练相空间区域内外的生成模型的不确定性以及数据驱动的校准技术。还提出了对LHCB丰富快速模拟的建议方法的测试。
In recent years fully-parametric fast simulation methods based on generative models have been proposed for a variety of high-energy physics detectors. By their nature, the quality of data-driven models degrades in the regions of the phase space where the data are sparse. Since machine-learning models are hard to analyse from the physical principles, the commonly used testing procedures are performed in a data-driven way and can't be reliably used in such regions. In our work we propose three methods to estimate the uncertainty of generative models inside and outside of the training phase space region, along with data-driven calibration techniques. A test of the proposed methods on the LHCb RICH fast simulation is also presented.