论文标题

椭圆形均匀线性方程的Lebesgue可溶解度的注释

A note on Lebesgue solvability of elliptic homogeneous linear equations with measure data

论文作者

Biliatto, Victor, Picon, Tiago

论文摘要

在这项工作中,我们为方程$ a^{*}(d)f =μ$ for $ f \ in l^{p} $和阳性度量数据$μ$与椭圆均匀的线性差异操作员$ $ $ a(d)$ m。我们的方法基于$(m,p) - $ $ $ $的能量控制,当$ 1 \ leq p <\ infty $时提供自然表征。我们还使用{新的$ l^{1} $估算椭圆机和取消操作员的措施估算了限制案例$ p = \ infty $在限制案例中获得足够的条件。

In this work, we present new results on solvability of the equation $A^{*}(D)f=μ$ for $f \in L^{p}$ and positive measure data $μ$ associated to an elliptic homogeneous linear differential operator $A(D)$ of order m. Our method is based on $(m,p)-$energy control of $μ$ giving a natural characterization for solutions when $1\leq p < \infty$. We also obtain sufficient conditions in the limiting case $p=\infty$ using {new $L^{1}$ estimates on measures for elliptic and canceling operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源