论文标题

Histostargan:肾脏组织病理学中染色标准化,染色转移和染色分割的统一方法

HistoStarGAN: A Unified Approach to Stain Normalisation, Stain Transfer and Stain Invariant Segmentation in Renal Histopathology

论文作者

Vasiljević, Jelica, Feuerhake, Friedrich, Wemmert, Cédric, Lampert, Thomas

论文摘要

虚拟染色转移是计算病理学研究的一个有希望的研究领域,在应用基于深度学习的解决方案(例如缺乏注释和对域转移的敏感性)时,它具有减轻重要局限性的巨大潜力。但是,在文献中,大多数虚拟染色方法都经过特定的染色或染色组合的培训,并且它们扩展到看不见的染色都需要获取其他数据和培训。在本文中,我们提出了Histostargan,这是一个统一的框架,在多个染色,染色归一化和染色不变分段之间执行染色转移,这都是模型的一项推论。我们证明了所提出的解决方案的概括能力,以对许多看不见的染色进行多种染色转移和准确的染色不变分段,这是该领域的第一个这样的证明。此外,预训练的Histostar-GAN模型可以用作合成数据生成器,该模型为使用完全注释的合成图像数据铺平了道路,以改善对基于深度学习的算法的训练。为了说明我们方法的功能以及显微镜域中的潜在风险,灵感来自自然图像中的应用,我们生成了肾脏路径学,这是一个完全注释的人工图像数据集,用于肾脏病理学。

Virtual stain transfer is a promising area of research in Computational Pathology, which has a great potential to alleviate important limitations when applying deeplearningbased solutions such as lack of annotations and sensitivity to a domain shift. However, in the literature, the majority of virtual staining approaches are trained for a specific staining or stain combination, and their extension to unseen stainings requires the acquisition of additional data and training. In this paper, we propose HistoStarGAN, a unified framework that performs stain transfer between multiple stainings, stain normalisation and stain invariant segmentation, all in one inference of the model. We demonstrate the generalisation abilities of the proposed solution to perform diverse stain transfer and accurate stain invariant segmentation over numerous unseen stainings, which is the first such demonstration in the field. Moreover, the pre-trained HistoStar-GAN model can serve as a synthetic data generator, which paves the way for the use of fully annotated synthetic image data to improve the training of deep learning-based algorithms. To illustrate the capabilities of our approach, as well as the potential risks in the microscopy domain, inspired by applications in natural images, we generated KidneyArtPathology, a fully annotated artificial image dataset for renal pathology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源