论文标题
某些Hilbert-Schmidt积分操作员的奇异极限
Singular limits of certain Hilbert-Schmidt integral operators
论文作者
论文摘要
在本文中,我们研究了在两个多间隙$ j $和$ e $上定义的积分运算符$ \ mathscr {k} $的小$λ$频谱渐近学,当时多间隙相互接触时(但是他们的室内装饰不相交)。操作员$ \ Mathscr {K} $与多间隔有限的Hilbert Transform(FHT)密切相关。这种情况可以看作是带有所谓的集成核的自我伴侣Hilbert-Schmidt积分运算符的单一限制,在该核心仍然有限制,但具有连续的频谱组件。 $ \ text {dist}(j,e)> 0 $,而$ \ mathscr {k} $是希尔伯特 - schmidt类中的常规情况,由作者在早期的论文中研究。本文的主要假设是$ u = j \ cup e $是一个间隔。我们表明,$ \ Mathscr {k} $的特征值,如果它们存在,则不会在$λ= 0 $下累积。结合作者的早期论文中的结果,这意味着$ h_p $,$ \ mathscr {k} $的不连续性(所有特征函数的跨度)的子空间是有限的尺寸,并且由$ j $和$ j $和$ e $的函数组成。我们还获得了对对角线的单一转换的内核的近似值,该转换将$ \ mathscr {k} $,并获得了倒置$ \ mathscr {k} $的指数不稳定的精确估计。我们的工作基于Riemann-Hilbert问题的方法以及Deift和Zhou的非线性最陡峭的方法。
In this paper we study the small-$λ$ spectral asymptotics of an integral operator $\mathscr{K}$ defined on two multi-intervals $J$ and $E$, when the multi-intervals touch each other (but their interiors are disjoint). The operator $\mathscr{K}$ is closely related to the multi-interval Finite Hilbert Transform (FHT). This case can be viewed as a singular limit of self-adjoint Hilbert-Schmidt integral operators with so-called integrable kernels, where the limiting operator is still bounded, but has a continuous spectral component. The regular case when $\text{dist}(J,E)>0$, and $\mathscr{K}$ is of the Hilbert-Schmidt class, was studied in an earlier paper by the authors. The main assumption in this paper is that $U=J\cup E$ is a single interval. We show that the eigenvalues of $\mathscr{K}$, if they exist, do not accumulate at $λ=0$. Combined with the results in an earlier paper by the authors, this implies that $H_p$, the subspace of discontinuity (the span of all eigenfunctions) of $\mathscr{K}$, is finite dimensional and consists of functions that are smooth in the interiors of $J$ and $E$. We also obtain an approximation to the kernel of the unitary transformation that diagonalizes $\mathscr{K}$, and obtain a precise estimate of the exponential instability of inverting $\mathscr{K}$. Our work is based on the method of Riemann-Hilbert problem and the nonlinear steepest-descent method of Deift and Zhou.