论文标题

在视觉降解环境中,基于边缘的单眼惯性进进量

Edge-based Monocular Thermal-Inertial Odometry in Visually Degraded Environments

论文作者

Wang, Yu, Chen, Haoyao, Liu, Yufeng, Zhang, Shiwu

论文摘要

基于常规视觉惯性探测器的复杂照明环境中的状态估计是由于视觉摄像机的严重视觉退化而具有挑战性的任务。热红外摄像机能够全天全天,受照明变化的影响较小。但是,大多数现有的视觉数据关联算法是不兼容的,因为热红外数据包含较大的噪声和低对比度。该研究提出了一个ETIO,该现象是由热辐射在物体边缘变化最大的现象,它提出了ETIO,这是在视觉降级环境中稳健定位的第一个基于边缘的单眼热惯性辐射。我们利用来自边缘提取的二进制图像来估算效果估计,而不是原始图像,以克服较差的热红外图像质量。然后,基于有限的边缘信息及其距离分布开发了自适应功能跟踪策略ADT-KLT。最后,姿势图优化通过将IMU预融合与所有边缘特征观测值的再投影误差相结合,在最近状态的滑动窗口上执行实时估计。我们评估了所提出的系统在公共数据集和现实世界实验上的性能,并将其与最新方法进行了比较。拟议的ETIO通过实现全天时间的准确和稳健定位的能力进行了验证。

State estimation in complex illumination environments based on conventional visual-inertial odometry is a challenging task due to the severe visual degradation of the visual camera. The thermal infrared camera is capable of all-day time and is less affected by illumination variation. However, most existing visual data association algorithms are incompatible because the thermal infrared data contains large noise and low contrast. Motivated by the phenomenon that thermal radiation varies most significantly at the edges of objects, the study proposes an ETIO, which is the first edge-based monocular thermal-inertial odometry for robust localization in visually degraded environments. Instead of the raw image, we utilize the binarized image from edge extraction for pose estimation to overcome the poor thermal infrared image quality. Then, an adaptive feature tracking strategy ADT-KLT is developed for robust data association based on limited edge information and its distance distribution. Finally, a pose graph optimization performs real-time estimation over a sliding window of recent states by combining IMU pre-integration with reprojection error of all edge feature observations. We evaluated the performance of the proposed system on public datasets and real-world experiments and compared it against state-of-the-art methods. The proposed ETIO was verified with the ability to enable accurate and robust localization all-day time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源