论文标题

Arah:铰接的人类SDF的动画卷渲染

ARAH: Animatable Volume Rendering of Articulated Human SDFs

论文作者

Wang, Shaofei, Schwarz, Katja, Geiger, Andreas, Tang, Siyu

论文摘要

将人体模型与可区分的渲染相结合,最近从稀疏的多视图RGB视频集中启用了衣服的动画化身。尽管最新的方法通过神经辐射场(NERF)实现了现实的外观,但由于缺少几何约束,推断的几何形状通常缺乏细节。此外,在分发姿势中为化身动画化是不可能的,因为从观察空间到规范空间的映射并不能忠实地概括地看不见的姿势。在这项工作中,我们解决了这些缺点,并提出了一个模型,以创建具有详细几何形状的动画穿着的人体化身,可以很好地推广到分布外的姿势。为了获得详细的几何形状,我们将铰接的隐式表面表示与体积渲染相结合。为了进行概括,我们为同时进行射线表面交点搜索和对应搜索的新型关节钓发现算法。我们的算法可实现有效的点采样和准确的点规范化,同时又可以概括地看不见的姿势。我们证明,我们提出的管道可以生成具有高质量姿势依赖性几何形状和外观的稀疏多视图RGB视频的衣服的化身。我们的方法在几何和外观重建方面实现了最先进的性能,同时创建可动的化身,从而超过了少量的训练姿势,可以很好地推广到分布式姿势。

Combining human body models with differentiable rendering has recently enabled animatable avatars of clothed humans from sparse sets of multi-view RGB videos. While state-of-the-art approaches achieve realistic appearance with neural radiance fields (NeRF), the inferred geometry often lacks detail due to missing geometric constraints. Further, animating avatars in out-of-distribution poses is not yet possible because the mapping from observation space to canonical space does not generalize faithfully to unseen poses. In this work, we address these shortcomings and propose a model to create animatable clothed human avatars with detailed geometry that generalize well to out-of-distribution poses. To achieve detailed geometry, we combine an articulated implicit surface representation with volume rendering. For generalization, we propose a novel joint root-finding algorithm for simultaneous ray-surface intersection search and correspondence search. Our algorithm enables efficient point sampling and accurate point canonicalization while generalizing well to unseen poses. We demonstrate that our proposed pipeline can generate clothed avatars with high-quality pose-dependent geometry and appearance from a sparse set of multi-view RGB videos. Our method achieves state-of-the-art performance on geometry and appearance reconstruction while creating animatable avatars that generalize well to out-of-distribution poses beyond the small number of training poses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源