论文标题

分布式MPC用于自组织的多基因系统合作 - 扩展版本

Distributed MPC for Self-Organized Cooperation of Multiagent Systems -- Extended Version

论文作者

Köhler, Matthias, Müller, Matthias A., Allgöwer, Frank

论文摘要

我们提出了一个顺序分布式模型预测控制(MPC)方案,用于对具有单个约束的动态脱钩异质非线性代理的多代理系统的合作控制。在该计划中,我们探讨了使用跟踪MPC与人工参考的想法,让代理协调其在没有外部指导的情况下进行合作。每个代理都将跟踪MPC与人工参考结合在一起,后者因合适的耦合成本而受到惩罚。他们解决了此人工参考的单个优化问题,以及跟踪它的输入,仅在通信图中将前者传达给其邻居。这使合作问题与处理动力学和约束的处理不同,从而松散了两者之间的联系。我们为合作问题的制定提供了足够的条件以及闭环系统的耦合成本,以渐近地实现它。由于动力学和合作问题仅是松散连接的,因此可以将分布式优化的经典结果用于此目的。我们说明了该方案在共识和形成控制中的应用。

We present a sequential distributed model predictive control (MPC) scheme for cooperative control of multi-agent systems with dynamically decoupled heterogeneous nonlinear agents subject to individual constraints. In the scheme, we explore the idea of using tracking MPC with artificial references to let agents coordinate their cooperation without external guidance. Each agent combines a tracking MPC with artificial references, the latter penalized by a suitable coupling cost. They solve an individual optimization problem for this artificial reference and an input that tracks it, only communicating the former to its neighbors in a communication graph. This puts the cooperative problem on a different layer than the handling of the dynamics and constraints, loosening the connection between the two. We provide sufficient conditions on the formulation of the cooperative problem and the coupling cost for the closed-loop system to asymptotically achieve it. Since the dynamics and the cooperative problem are only loosely connected, classical results from distributed optimization can be used to this end. We illustrate the scheme's application to consensus and formation control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源