论文标题

联合用户本地化和混合智能表面的位置校准

Joint User Localization and Location Calibration of A Hybrid Reconfigurable Intelligent Surface

论文作者

Ghazalian, Reza, Chen, Hui, Alexandropoulos, George C., Seco-Granados, Gonzalo, Wymeersch, Henk, Jäntti, Riku

论文摘要

可重新配置智能表面(RISS)的新兴技术的最新研究确定了其本地化和感应的高潜力。但是,要准确地将放置在RI的影响区域的用户进行定位,需要将RIS位置知道先验,并且需要优化其相位轮廓以进行本地化。在本文中,我们研究了混合RIS(HRIS)和用户的联合定位问题,考虑到前者配备了单个接收射频(RF)链,从而实现了同时可调反射并通过功率分解感测。为了关注多端基基站的下行链路,我们提出了一种多阶段方法,用于估计HRIS位置和方向以及用户位置。我们的仿真结果,包括与Cramér-Rao下限的比较,证明了所提出的定位方法的效率,同时展示了所需的多参数估计问题的最佳HRIS功率拆分率。

The recent research in the emerging technology of reconfigurable intelligent surfaces (RISs) has identified its high potential for localization and sensing. However, to accurately localize a user placed in the area of influence of an RIS, the RIS location needs to be known a priori and its phase profile is required to be optimized for localization. In this paper, we study the problem of the joint localization of a hybrid RIS (HRIS) and a user, considering that the former is equipped with a single reception radio-frequency (RF) chain enabling simultaneous tunable reflections and sensing via power splitting. Focusing on the downlink of a multi-antenna base station, we present a multi-stage approach for the estimation of the HRIS position and orientation as well as the user position. Our simulation results, including comparisons with the Cramér-Rao lower bounds, demonstrate the efficiency of the proposed localization approach, while showcasing that there exists an optimal HRIS power splitting ratio for the desired multi-parameter estimation problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源