论文标题

具有时间异质性的二元纵向数据的功能聚类方法

Functional clustering methods for binary longitudinal data with temporal heterogeneity

论文作者

Sohn, Jinwon, Jeong, Seonghyun, Cho, Young Min, Park, Taeyoung

论文摘要

在二元纵向数据的分析中,有趣的是,对响应与协变量之间的动态关系建模是时间的函数,同时还研究了相似的时间依赖性相互作用模式。我们提出了一个新颖的广义变化模型,该模型可以说明受试者内部的可变性,并同时簇变化,而无需限制群集的数量或过度拟合数据。在对一系列二元数据的分析中,该模型提取了种群级固定效应,群集级别的变化效应和主题级随机效应。各种仿真研究表明,当群集数量未知时,提出的方法正确指定群集特异性变化的方法的有效性和实用性。所提出的方法应用于德国社会经济小组(GSOEP)研究中的一系列二元数据,在该研究中,我们确定了三个主要群集,证明了社会经济预测因子对年龄对工作状态的函数的不同影响。

In the analysis of binary longitudinal data, it is of interest to model a dynamic relationship between a response and covariates as a function of time, while also investigating similar patterns of time-dependent interactions. We present a novel generalized varying-coefficient model that accounts for within-subject variability and simultaneously clusters varying-coefficient functions, without restricting the number of clusters nor overfitting the data. In the analysis of a heterogeneous series of binary data, the model extracts population-level fixed effects, cluster-level varying effects, and subject-level random effects. Various simulation studies show the validity and utility of the proposed method to correctly specify cluster-specific varying-coefficients when the number of clusters is unknown. The proposed method is applied to a heterogeneous series of binary data in the German Socioeconomic Panel (GSOEP) study, where we identify three major clusters demonstrating the different varying effects of socioeconomic predictors as a function of age on the working status.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源