论文标题
复杂值BV函数代数的投射烦恼和稳定等级
Projective Freeness and Stable Rank of Algebras of Complex-valued BV Functions
论文作者
论文摘要
该论文研究了有限间隔上有界变异的复杂值函数Banach代数的代数特性。事实证明,这样的代数具有低音稳定的排名第一,如果不包含非平凡的构想,则它们是免费的。这些特性源自对有限线性测量的连续性的多项式凸面的第二čech共同学组消失的新结果。
The paper investigates the algebraic properties of Banach algebras of complex-valued functions of bounded variation on a finite interval. It is proved that such algebras have Bass stable rank one and are projective free if they do not contain nontrivial idempotents. These properties are derived from a new result on the vanishing of the second Čech cohomology group of the polynomially convex hull of a continuum of a finite linear measure.