论文标题

通过模板订单数据扩展改善情感四边形预测

Improving Aspect Sentiment Quad Prediction via Template-Order Data Augmentation

论文作者

Hu, Mengting, Wu, Yike, Gao, Hang, Bai, Yinhao, Zhao, Shiwan

论文摘要

最近,方面情感四边形预测(ASQP)已成为方面层次分析领域的一项流行任务。先前的工作利用一个预定义的模板将原始句子解释为结构目标序列,可以轻松地将其解码为表单的四倍(方面类别,方面术语,意见术语,情感极性)。该模板以固定顺序涉及四个元素。但是,我们观察到,该解决方案与ASQP任务的无订单属性相矛盾,因为只要正确提取了四倍体,就无需修复模板顺序。受观察的启发,我们研究了模板订单的效果,发现某些订单有助于生成模型实现更好的性能。假设不同的订单提供了四倍体的各种视图。因此,我们提出了一种简单但有效的方法来识别最适当的订单,并进一步将多个正确的模板与数据增强相结合以改进ASQP任务。具体而言,我们使用预先训练的语言模型来选择具有最小熵的订单。通过使用这些模板订单对预训练的语言模型进行微调,我们的方法改善了四边形预测的性能,并且在低资源设置中的最先进方法均优于最先进的方法。

Recently, aspect sentiment quad prediction (ASQP) has become a popular task in the field of aspect-level sentiment analysis. Previous work utilizes a predefined template to paraphrase the original sentence into a structure target sequence, which can be easily decoded as quadruplets of the form (aspect category, aspect term, opinion term, sentiment polarity). The template involves the four elements in a fixed order. However, we observe that this solution contradicts with the order-free property of the ASQP task, since there is no need to fix the template order as long as the quadruplet is extracted correctly. Inspired by the observation, we study the effects of template orders and find that some orders help the generative model achieve better performance. It is hypothesized that different orders provide various views of the quadruplet. Therefore, we propose a simple but effective method to identify the most proper orders, and further combine multiple proper templates as data augmentation to improve the ASQP task. Specifically, we use the pre-trained language model to select the orders with minimal entropy. By fine-tuning the pre-trained language model with these template orders, our approach improves the performance of quad prediction, and outperforms state-of-the-art methods significantly in low-resource settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源