论文标题

半监督语义分割的伪标记噪声抑制技术

Pseudo-Label Noise Suppression Techniques for Semi-Supervised Semantic Segmentation

论文作者

Scherer, Sebastian, Schön, Robin, Lienhart, Rainer

论文摘要

半监督学习(SSL)可以通过将未标记的数据纳入培训中来减少对大型标签数据集的需求。这对于语义细分特别有趣,在这种语义分段中,标记数据非常昂贵且耗时。当前的SSL方法使用最初受过监督的训练模型来生成未标记图像的预测,称为伪标签,随后将其用于从头开始训练新模型。由于预测通常不是来自无错误的神经网络,因此它们自然充满了错误。但是,用部分错误的标签培训通常会降低最终模型性能。因此,明智地管理伪标签的错误/噪声至关重要。在这项工作中,我们使用三种机制来控制伪标签的噪声和错误:(1)我们通过在未标记的图像上将图像与牛模式混合,以减少错误的伪标签的负面影响,从而构建一个坚实的基础框架。然而,错误的伪标签仍然会对性能产生负面影响。因此,(2)我们为伪标签提出了一个简单有效的减肥方案,该伪标记是由在这些伪标签上训练的模型的反馈定义的。这使我们能够根据训练期间确定的置信度得分来软键化伪标签训练示例。 (3)我们还研究了具有较低信心的伪标签的共同实践,并经验分析具有不同置信度范围对SSL的伪标签的影响和影响,以及伪标签过滤对可实现的性能提高的贡献。我们表明,我们的方法在各种数据集上的状态替代方案都具有优越性。此外,我们表明我们的发现也转移到其他任务,例如人类姿势估计。我们的代码可从https://github.com/christmasfan/ssl_denoising_sementation获得。

Semi-supervised learning (SSL) can reduce the need for large labelled datasets by incorporating unlabelled data into the training. This is particularly interesting for semantic segmentation, where labelling data is very costly and time-consuming. Current SSL approaches use an initially supervised trained model to generate predictions for unlabelled images, called pseudo-labels, which are subsequently used for training a new model from scratch. Since the predictions usually do not come from an error-free neural network, they are naturally full of errors. However, training with partially incorrect labels often reduce the final model performance. Thus, it is crucial to manage errors/noise of pseudo-labels wisely. In this work, we use three mechanisms to control pseudo-label noise and errors: (1) We construct a solid base framework by mixing images with cow-patterns on unlabelled images to reduce the negative impact of wrong pseudo-labels. Nevertheless, wrong pseudo-labels still have a negative impact on the performance. Therefore, (2) we propose a simple and effective loss weighting scheme for pseudo-labels defined by the feedback of the model trained on these pseudo-labels. This allows us to soft-weight the pseudo-label training examples based on their determined confidence score during training. (3) We also study the common practice to ignore pseudo-labels with low confidence and empirically analyse the influence and effect of pseudo-labels with different confidence ranges on SSL and the contribution of pseudo-label filtering to the achievable performance gains. We show that our method performs superior to state of-the-art alternatives on various datasets. Furthermore, we show that our findings also transfer to other tasks such as human pose estimation. Our code is available at https://github.com/ChristmasFan/SSL_Denoising_Segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源