论文标题

在可逆动态环境中随机步行速度中的反对称性的注释

A note on the antisymmetry in the speed of a random walk in reversible dynamic random environment

论文作者

Blondel, Oriane

论文摘要

在此简短说明中,我们证明$ v(-ε)= - v(ε)$。在这里,$ v(ε)$是在动态\ emph {可逆}随机环境中进行一维随机步行的速度,如果概率为$ 1/2+ε$(sesp。1/2-ε$),如果它站在占用的站点上,而在空地上则可以在左右$ 1/2+ε$(左)跳跃(左侧)。我们在$ V(ε),v(-ε)$的任何情况下工作,即弱LLN保持。证明依赖于仅在离散设置中保存的简单耦合参数。

In this short note, we prove that $v(-ε)=-v(ε)$. Here, $v(ε)$ is the speed of a one-dimensional random walk in a dynamic \emph{reversible} random environment, that jumps to the right (resp. to the left) with probability $1/2+ε$ (resp. $1/2-ε$) if it stands on an occupied site, and vice-versa on an empty site. We work in any setting where $v(ε), v(-ε)$ are well-defined, i.e. a weak LLN holds. The proof relies on a simple coupling argument that holds only in the discrete setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源