论文标题

关于Galois自助式GRS和TGRS代码的存在

On the Existence of Galois Self-Dual GRS and TGRS Codes

论文作者

Zhu, Shixin, Wan, Ruhao

论文摘要

令$ q = p^m $为主要功率,$ e $是$ 0 \ leq e \ leq m-1 $的整数。 $ e $ -galois的自助式代码是Euclidean $(e = 0)$和Hermitian($ e = \ frac {m} {2} $,带有$ M $)的概括。在本文中,对于线性代码$ \ c $和非零矢量$ \ bm {u} \ in \ f_q^n $,我们为双扩展代码$ \ useverline {\ c} {\ c} [\ bm {u}] $ $ \ c $ $ e $ e $ e $ - galois sefors of be y n of tline {\ c} [\ bm {u}] $。由此,提出了一种新的系统方法,以证明存在$ e $ -galois自动偶数代码。通过这种方法,我们证明$ e $ - galois自dual(扩展)广义的芦苇 - 固体(grs)代码为长度$ n> \ min \ {p^e+1,p^{m-e} +1 \} $不存在,在$ 1 \ leq e \ leq e \ leq m-1 $的位置。此外,基于扭曲GRS(TGRS)代码的非GRS属性,我们表明在许多情况下,$ e $ galois self-dual(扩展)TGRS代码不存在。此外,我们为$(\ ast)$ -TGRS代码提供了足够且必要的条件,使其成为Hermitian self-dual,然后构建几个新的Hermitian self-Dual $(+)$ - tgrs和$(\ ast)$ -TGRS代码。

Let $q=p^m$ be a prime power and $e$ be an integer with $0\leq e\leq m-1$. $e$-Galois self-dual codes are generalizations of Euclidean $(e=0)$ and Hermitian ($e=\frac{m}{2}$ with even $m$) self-dual codes. In this paper, for a linear code $\C$ and a nonzero vector $\bm{u}\in \F_q^n$, we give a sufficient and necessary condition for the dual extended code $\underline{\C}[\bm{u}]$ of $\C$ to be $e$-Galois self-orthogonal. From this, a new systematic approach is proposed to prove the existence of $e$-Galois self-dual codes. By this method, we prove that $e$-Galois self-dual (extended) generalized Reed-Solomon (GRS) codes of length $n>\min\{p^e+1,p^{m-e}+1\}$ do not exist, where $1\leq e\leq m-1$. Moreover, based on the non-GRS properties of twisted GRS (TGRS) codes, we show that in many cases $e$-Galois self-dual (extended) TGRS codes do not exist. Furthermore, we present a sufficient and necessary condition for $(\ast)$-TGRS codes to be Hermitian self-dual, and then construct several new classes of Hermitian self-dual $(+)$-TGRS and $(\ast)$-TGRS codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源