论文标题
几何深度学习评估左侧心脏附属物中血栓形成风险
Geometric Deep Learning for the Assessment of Thrombosis Risk in the Left Atrial Appendage
论文作者
论文摘要
通过采用特定于患者的计算流体动力学(CFD)模拟,对左心附件(LAA)血栓形成的评估已取得了重大进展。尽管如此,由于流体动力学求解器所需的庞大计算资源和较长的执行时间,旨在开发基于神经网络的流体流量模拟的替代模型的工作不断增长。本研究基于该基础,建立了能够预测内皮细胞激活潜力(ECAP)的深度学习(DL)框架,该框架与血栓形成的风险有关,仅来自患者特定的LAA几何形状。为此,我们利用了几何DL的最新进展,该几何DL无缝将无与伦比的卷积神经网络(CNN)的无与伦比潜力扩展到非欧几里得数据,例如网格。该模型通过组合202合成和54个Real LAA的数据集进行了训练,即时预测了ECAP分布,平均平均绝对误差为0.563。此外,即使仅在合成病例中接受培训时,最终的框架也可以预测与较高的ECAP值相关的解剖特征。
The assessment of left atrial appendage (LAA) thrombogenesis has experienced major advances with the adoption of patient-specific computational fluid dynamics (CFD) simulations. Nonetheless, due to the vast computational resources and long execution times required by fluid dynamics solvers, there is an ever-growing body of work aiming to develop surrogate models of fluid flow simulations based on neural networks. The present study builds on this foundation by developing a deep learning (DL) framework capable of predicting the endothelial cell activation potential (ECAP), linked to the risk of thrombosis, solely from the patient-specific LAA geometry. To this end, we leveraged recent advancements in Geometric DL, which seamlessly extend the unparalleled potential of convolutional neural networks (CNN), to non-Euclidean data such as meshes. The model was trained with a dataset combining 202 synthetic and 54 real LAA, predicting the ECAP distributions instantaneously, with an average mean absolute error of 0.563. Moreover, the resulting framework manages to predict the anatomical features related to higher ECAP values even when trained exclusively on synthetic cases.