论文标题
关于代数的PI-Expents的存在
On existence of PI-exponent of algebras with involution
论文作者
论文摘要
我们研究代数的多项式身份,在特征零字段中不参与非缔合代数。我们证明,有限维代数的$*$ - 编纂的序列的增长是指数界的。我们构建了一系列具有分数$*$ - pi-Exponent的有限维代数。我们还构建了一个无限维代数的家族$c_α$,因此不存在$ {\ rm exp}^*(c_α)$。
We study polynomial identities of algebras with involution of nonassociative algebras over a field of characteristic zero. We prove that the growth of the sequence of $*$-codimensions of a finite-dimensional algebra is exponentially bounded. We construct a series of finite-dimensional algebras with fractional $*$-PI-exponent. We also construct a family of infinite-dimensional algebras $C_α$ such that ${\rm exp}^*(C_α)$ does not exist.