论文标题
全息单粒子成像,用于弱散射,异质纳米级对象
Holographic single particle imaging for weakly scattering, heterogeneous nanoscale objects
论文作者
论文摘要
X射线游离电子激光器(XFELS)处的单个粒子成像(SPI)是一种技术,可从随机取向以这些对象的大量副本副本的衍射模式来确定纳米级对象的3D结构。在X射线SPI实验期间,收集了数百万个具有未知方向的低信噪衍射模式。然后,使用重建算法对模式进行分析和合并,以检索粒子的完整3D结构。重建的分辨率受背景噪声,衍射模式的信噪比和收集的数据总量的限制。我们最近引入了一种参考增强的全息单粒子成像方法[Optica 7,593-601(2020)],以收集高足够高的信噪比和背景耐受模式以及一个重建算法,以恢复超出方向超出方向的缺失参数,然后直接取回感兴趣样品的完整傅立叶模型。在这里,我们根据最大似然估计使用模式搜索称为MAXLP,描述了一种相位检索算法,具有更好的可扩展性,可用于对潜在参数进行精细采样,并且在低信号限制中的性能更好。此外,我们表明,目标粒子内的结构变化在真实空间中平均,与常规SPI相比,对构象异质性的鲁棒性显着提高。通过这些计算改进,我们认为参考增强的SPI能够达到子NM分辨率生物分子成像。
Single particle imaging (SPI) at X-ray free electron lasers (XFELs) is a technique to determine the 3D structure of nanoscale objects like biomolecules from a large number of diffraction patterns of copies of these objects in random orientations. Millions of low signal-to-noise diffraction patterns with unknown orientation are collected during an X-ray SPI experiment. The patterns are then analyzed and merged using a reconstruction algorithm to retrieve the full 3D-structure of particle. The resolution of reconstruction is limited by background noise, signal-to-noise ratio in diffraction patterns and total amount of data collected. We recently introduced a reference-enhanced holographic single particle imaging methodology [Optica 7,593-601(2020)] to collect high enough signal-to-noise and background tolerant patterns and a reconstruction algorithm to recover missing parameters beyond orientation and then directly retrieve the full Fourier model of the sample of interest. Here we describe a phase retrieval algorithm based on maximum likelihood estimation using pattern search dubbed as MaxLP, with better scalability for fine sampling of latent parameters and much better performance in the low signal limit. Furthermore, we show that structural variations within the target particle are averaged in real space, significantly improving robustness to conformational heterogeneity in comparison to conventional SPI. With these computational improvements, we believe reference-enhanced SPI is capable of reaching sub-nm resolution biomolecule imaging.