论文标题

渐近近似Fekete阵列

Asymptotic Approximate Fekete Arrays

论文作者

Bloom, T., Bos, L., Levenberg, N.

论文摘要

渐近fekete阵列的概念,紧凑型套件中的点数$ k \ subset {\ bf c}^d $,像fekete阵列一样渐近地表现出渐近,尽管最近在dimensions $ d> 1 $中都进行了很好的研究。在这里,我们表明,一个人可以允许更灵活的定义,而数组中的点不必位于$ k $中。我们的结果在加权多功能理论的一般环境中起作用,在多维环境中,在多维环境中依赖于伯尔曼,boucksom和Nystrom的开创性工作。

The notion of asymptotic Fekete arrays, arrays of points in a compact set $K\subset {\bf C}^d$ which behave asymptotically like Fekete arrays, has been well-studied, albeit much more recently in dimensions $d>1$. Here we show that one can allow a more flexible definition where the points in the array need not lie in $K$. Our results, which work in the general setting of weighted pluripotential theory, rely heavily, in the multidimensional setting, on the ground-breaking work of Berman, Boucksom and Nystrom.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源