论文标题
严格的变形量化和局部自旋相互作用
Strict deformation quantization and local spin interactions
论文作者
论文摘要
我们定义了一个严格的变形量化,该量化与任何哈密顿量与局部自旋相互作用(例如,海森伯格汉密尔顿人)的自旋链兼容。这是对均值理论已知的先前结果的概括。主要思想是研究在环状置换产生的组下,适当定义的序列代数的渐近特性。我们的观点类似于Landsman,Moretti和van de Ven所采用的观点,他们考虑了对平均场理论的严格变形量化。但是,由于存在严格的对称组,因此局部自旋相互作用的方法更多地参与其中。
We define a strict deformation quantization which is compatible with any Hamiltonian with local spin interaction (e.g. the Heisenberg Hamiltonian) for a spin chain. This is a generalization of previous results known for mean-field theories. The main idea is to study the asymptotic properties of a suitably defined algebra of sequences invariant under the group generated by a cyclic permutation. Our point of view is similar to the one adopted by Landsman, Moretti and van de Ven, who considered a strict deformation quantization for the case of mean-field theories. However, the methods for a local spin interaction are considerably more involved, due to the presence of a strictly smaller symmetry group.