论文标题

光学预言微波光子

Optically heralded microwave photons

论文作者

Jiang, Wentao, Mayor, Felix M., Malik, Sultan, Van Laer, Raphaël, McKenna, Timothy P., Patel, Rishi N., Witmer, Jeremy D., Safavi-Naeini, Amir H.

论文摘要

分布和流程纠缠的量子网络将使强大的新计算机和传感器能够实现。频率为几百头Terahertz的光子光子也许是在长距离内分布量子信息的唯一方法。另一方面,超导量子位是实现大型量子机的最有前途的方法之一,它自然地在微波光子上运行,其能量减少了约40,000美元。要在可观的距离上建立这些量子机,我们必须弥合此频率间隙,并学习如何在电磁频谱的广泛不同部分产生纠缠。在这里,我们实现并演示了一个可以在光学和微波光子之间生成纠缠的传感器设备,并使用它来证明,通过检测光光子,我们在微波炉场中添加了一个光子。我们通过将Gigahertz纳米力学共振作为中介来实现这一目标,并通过强烈的光学机械和压电相互作用有效地将其与光学和微波通道耦合。我们以$ 5 \%$ $频率转换效率的价格显示了换能器的连续操作,并以$ 15 $ hertz的先驱速率脉冲微波光子生成。设备中的光吸收产生的热噪声小于两个微波光子。来自一对传感器的光光子的关节测量将意识到遥远的微波频率量子节点之间的纠缠产生。系统效率和设备性能的提高,必须实现此类网络中高纠缠产生速度的必要条件。

A quantum network that distributes and processes entanglement would enable powerful new computers and sensors. Optical photons with a frequency of a few hundred terahertz are perhaps the only way to distribute quantum information over long distances. Superconducting qubits on the other hand, which are one of the most promising approaches for realizing large-scale quantum machines, operate naturally on microwave photons that have roughly $40,000$ times less energy. To network these quantum machines across appreciable distances, we must bridge this frequency gap and learn how to generate entanglement across widely disparate parts of the electromagnetic spectrum. Here we implement and demonstrate a transducer device that can generate entanglement between optical and microwave photons, and use it to show that by detecting an optical photon we add a single photon to the microwave field. We achieve this by using a gigahertz nanomechanical resonance as an intermediary, and efficiently coupling it to optical and microwave channels through strong optomechanical and piezoelectric interactions. We show continuous operation of the transducer with $5\%$ frequency conversion efficiency, and pulsed microwave photon generation at a heralding rate of $15$ hertz. Optical absorption in the device generates thermal noise of less than two microwave photons. Joint measurements on optical photons from a pair of transducers would realize entanglement generation between distant microwave-frequency quantum nodes. Improvements of the system efficiency and device performance, necessary to realize a high rate of entanglement generation in such networks are within reach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源