论文标题
部分可观测时空混沌系统的无模型预测
Routine Usage of AI-based Chest X-ray Reading Support in a Multi-site Medical Supply Center
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Research question: How can we establish an AI support for reading of chest X-rays in clinical routine and which benefits emerge for the clinicians and radiologists. Can it perform 24/7 support for practicing clinicians? 2. Findings: We installed an AI solution for Chest X-ray in a given structure (MVZ Uhlenbrock & Partner, Germany). We could demonstrate the practicability, performance, and benefits in 10 connected clinical sites. 3. Meaning: A commercially available AI solution for the evaluation of Chest X-ray images is able to help radiologists and clinical colleagues 24/7 in a complex environment. The system performs in a robust manner, supporting radiologists and clinical colleagues in their important decisions, in practises and hospitals regardless of the user and X-ray system type producing the image-data.