论文标题
耦合线性系统的准模式的分析方法
An analytic approach to quasinormal modes for coupled linear systems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Quasinormal modes describe the ringdown of compact objects deformed by small perturbations. In generic theories of gravity that extend General Relativity, the linearized dynamics of these perturbations is described by a system of coupled linear differential equations of second order. We first show, under general assumptions, that such a system can be brought to a Schrödinger-like form. We then devise an analytic approximation scheme to compute the spectrum of quasinormal modes. We validate our approach using a toy model with a controllable mixing parameter $\varepsilon$ and showing that the analytic approximation for the fundamental mode agrees with the numerical computation when the approximation is justified. The accuracy of the analytic approximation is at the (sub-) percent level for the real part and at the level of a few percent for the imaginary part, even when $\varepsilon$ is of order one. Our approximation scheme can be seen as an extension of the approach of Schutz and Will to the case of coupled systems of equations, although our approach is not phrased in terms of a WKB analysis, and offers a new viewpoint even in the case of a single equation.