论文标题
使用隐藏空间增强和自我监督的对比度适应的质量质量域域适应
QA Domain Adaptation using Hidden Space Augmentation and Self-Supervised Contrastive Adaptation
论文作者
论文摘要
问题回答(QA)最近显示了从定制域中回答问题的令人印象深刻的结果。但是,一个普遍的挑战是将质量检查模型调整为看不见的目标域。在本文中,我们提出了一个新颖的自我监督框架,称为QADA,用于QA域适应。 QADA引入了用于增强训练质量检查样本的新型数据增强管道。与现有方法不同,我们通过隐藏的空间扩展丰富了样品。有问题,我们介绍了带有DIRICHLET分布的多跳同义词和样本增强的令牌嵌入。对于上下文,我们开发了一种增强方法,该方法学会通过自定义细心抽样策略来删除上下文跨度。此外,对比度学习还集成到拟议的自我监督的适应框架Qada中。与现有方法不同,我们生成伪标签,并建议通过一种新型的基于注意力的对比适应方法训练该模型。注意力权重用于构建内容丰富的功能,以进行差异估计,该功能可帮助质量保证模型分开答案并跨源域和目标域进行推广。据我们所知,我们的工作是第一个利用隐藏的空间增强和基于注意力的对比度适应质量保护量的自我监督域的适应。我们的评估表明,QADA在QA域适应性中的最新基线方面在多个目标数据集上取得了可观的改进。
Question answering (QA) has recently shown impressive results for answering questions from customized domains. Yet, a common challenge is to adapt QA models to an unseen target domain. In this paper, we propose a novel self-supervised framework called QADA for QA domain adaptation. QADA introduces a novel data augmentation pipeline used to augment training QA samples. Different from existing methods, we enrich the samples via hidden space augmentation. For questions, we introduce multi-hop synonyms and sample augmented token embeddings with Dirichlet distributions. For contexts, we develop an augmentation method which learns to drop context spans via a custom attentive sampling strategy. Additionally, contrastive learning is integrated in the proposed self-supervised adaptation framework QADA. Unlike existing approaches, we generate pseudo labels and propose to train the model via a novel attention-based contrastive adaptation method. The attention weights are used to build informative features for discrepancy estimation that helps the QA model separate answers and generalize across source and target domains. To the best of our knowledge, our work is the first to leverage hidden space augmentation and attention-based contrastive adaptation for self-supervised domain adaptation in QA. Our evaluation shows that QADA achieves considerable improvements on multiple target datasets over state-of-the-art baselines in QA domain adaptation.